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Acoustic self-oscillation in a spherical microwave plasma
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We present a method of sound amplification and self-oscillation in high pressure partially ionized gas.
Continuous microwaves incident on partially ionized gas may sustain and amplify an acoustic field if increased
ionization during the sound field’s adiabatic compression enhances rf power absorption. Amplifying sound
in this way enables the generation of high amplitude sound in a cavity containing partially ionized gas
without mechanical driving or precise knowledge of its resonance frequency. This method of amplification
may open opportunities within thermoacoustics such as using three-dimensional geometries and volumetric gain
mechanisms.
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I. INTRODUCTION

An acoustic cavity held out of thermal equilibrium by a
heat source may spontaneously amplify its resonant modes to
extraordinary amplitudes. Famous lecture demonstrations of
the amplification of sound in the presence of a thermal gradi-
ent include the Rijke tube [1], Sondhauss tube [2], and Knipps
tube [3]. Such amplification can both cause catastrophe by rat-
tling apart jet engines [4] or benefit through the generation of
electrical energy [5]. To explain these phenomena, Rayleigh
wrote general criteria for amplification and what would be-
come the guiding principle of thermoacoustics: “If heat be
given to the air at the moment of greatest condensation, or
be taken from it at the moment of greatest rarefaction, the
vibration is encouraged” [6].

When a gas ionizes and becomes conducting, electromag-
netic radiation may be used to effect heating throughout its
volume. In the present study, we consider how a standing
sound wave may modify a gas’s conductivity and absorption
of radiation so as to cause amplification. Similar amplification
of sound in a plasma has been observed and explained in
the context of rarefied, ionized gas such as glow discharges
and fluorescent lamps [7,8]. In such low density systems, the
acoustic period is shorter than the electron-ion recombination
time, and the temperature oscillations of the acoustic wave do
not appreciably change the ionization fraction. In the higher
density systems we consider, the ionization fraction oscillates
in phase with pressure, which is shown here to enhance
amplification.

The current proposal is motivated by an observation made
while studying acoustic plasma confinement [9,10]. As re-
ported in [10], the 180 dB re 20 μPa sound wave that confines
a lightly ionized collisional plasma causes luminosity oscil-
lations in phase with its acoustic pressure. It is well known
that there is a temperature oscillation associated with sound,
and the amplitude quoted above corresponds to a temperature
swing of more than 10 K. The opportunity here is that because
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the system sits at a temperature on the cusp of ionization,
small changes in temperature lead to changes in electron
density and microwave absorption that are in phase with
acoustic compression. For these reasons, this high density,
ionizing environment should be investigated for interesting
nonlinear acoustic effects beyond those presented here and in
those papers mentioned above.

In this paper, we present a type of acoustic self-oscillation
that may occur in an acoustic cavity filled with partially
ionized gas located within a microwave cavity as shown in
Fig. 1. For the present analysis, the configuration is assumed
similar to that found in [9–11], where the acoustic cavity was
a sealed quartz sphere with a radius around 2 cm, and the
surrounding metallic microwave cavity had a resonance near
2.45 GHz. Future implementations may include a means to
couple the sound out of the acoustic cavity, for example, by
attaching a horn shaped outlet.

The amplification conditions are determined via an anal-
ysis based on Saha’s ionization equation [12], the Drude
conductivity [13], Ohm’s law, and the acoustic wave equation
forced by a time-varying heat source [14]. We demonstrate
that Rayleigh’s criteria of acoustic amplification can be satis-
fied in achievable conditions when a gas’s ionization fraction
increases due to adiabatic acoustic compression.

II. WAVE EQUATION WITH HEAT SOURCE

Sound is typically generated by driving pressure or velocity
oscillations with a moving object, but variable heating or
cooling can also induce sound. In an ideal gas, this effect is
manifest in the relation between internal energy, temperature,
and pressure. The possibility of generating sound by variable
heating was demonstrated more than a hundred years ago by
heating thin filaments in the so-called Thermophone [15], but
practical implementation of simultaneous high frequency and
amplitude has been hindered by the difficulty of oscillating the
filament’s thermal mass at sonic frequencies [16]. High power
rf sources such as magnetrons, however, can both directly
heat a volume of partially ionized gas and undergo rapid
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FIG. 1. Spherical acoustic resonator sits within a microwave cav-
ity. Low levels of ionization in the hot gas within the resonator allow
driving sound with amplitude modulated microwaves. Under the
right conditions, sound will spontaneously develop in the presence
of a continuous wave (i.e., no modulation) microwave field.

modulation, which enables high amplitude and high frequency
sound generation.

For a general volumetric heating, a direct manipulation of
the Euler, conservation of mass, and the heating equations
produces a modified wave equation which highlights the
ability of a time-varying, volumetric heating, H , to generate
sound,

∂2

∂t2
p1 − c2∇2 p1 = (γ − 1)

∂H

∂t
, (1)

where p1 is the acoustic pressure, c is the speed of sound, and
γ is the ratio of specific heats [8,14]. This form of the wave
equation explains the sound generation of modulated flames
[17] and the buzzing of overhead power lines [18].

III. JOULE HEATING IN A PARTIALLY IONIZED GAS

At temperatures above a few thousand kelvin, as gas begins
to ionize, EM radiation can be used to directly add energy
to the gas. At neutral density near that of air at STP, N0 ≈
2.5 × 1019 per cc, the free electrons that absorb the EM
radiation will collide with neutral particles within a collision
time, τ , that is shorter than the microwave period, 2π/ω =
[2.45 GHz]−1 ≈ 0.4 ns. Under such conditions, the EM power
absorption can be accurately described as Joule heating of the
gas with the familiar power absorption formula,

H = σpE2
p, (2)

where σp is the electrical conductivity of the plasma and Ep

is the electric field within the plasma [19,20]. For the present
case, we assume that the microwave penetration depth into the
plasma is greater than its radius, δr f > R, and Ep is constant
throughout the plasma.

When the collision time, τ , is also less than the plasma
frequency of the gas, the conductivity is well modeled by the
Drude formula [13,21],

σp = Nee2

me
τ, (3)

where Ne is the free electron density, me is the electron mass,
and e is the fundamental charge.

By calculating the collision time as the quotient of the
mean free path and the mean thermal speed [13], the Drude
conductivity can be directly rewritten in terms of the ioniza-
tion fraction, temperature, a collision cross sectional area, a,
and fundamental constants

σp = Ne

N0

e2

mea

√
πme

8kBT
. (4)

By combining Eqs. (2) and (4), the volumetric heating of a
partially ionized gas with a relatively high neutral density can
be computed for a given Ep.

IV. SAHA’S IONIZATION EQUATION

The equilibrium ionization fraction of a gas, x = Ne/N , is
determined by the temperature, number density, N , and ion-
ization energy of the gas, χ , via the Saha ionization equation,

x2

1 − x
= 2g

Nλ3
exp

(
− χ

kBT

)
, (5)

where g is a statistical weight we’ve taken to be 1 and λ =
h/

√
2πmekBT is the thermal de Broglie wavelength [12]. At

low ionization, x � 1, the Saha equation is often simplified to

x =
√

2

N0λ3
exp

(
− χ

2kBT

)
, (6)

which is the form to be used in the following stability analysis.

V. ACOUSTIC PERTURBATION TO JOULE HEATING

By using the Saha equation to predict the ionization frac-
tion, the conductivity is determined by the temperature and
neutral density of a gas. Under the assumption that the ion-
ization changes in phase with the temperature and pressure,
one can expect that a sound wave passing through the gas will
also cause oscillatory heating that is in phase with the acoustic
pressure. This would satisfy the Rayleigh criterion.

To demonstrate that process, the temperature [22] and
neutral density can be expanded to first order in terms of the
acoustic pressure field p1,

T = T0

(
1 + γ − 1

γ

p1

p0

)
, (7)

N0 = N00

(
1 + 1

γ

p1

p0

)
. (8)

Here, p0, T0, and N00 are the pressure, temperature, and neutral
number density in the absence of a sound field. By using the
linearizations in Eqs. (7) and (8) in the Saha equation (6)
and Drude conductivity equation (4), the Joule heating in the
presence of a constant electric field can be written to first order
in terms of the acoustic field as

H = H0

[
1 +

(
1

4

γ − 1

γ
− 1

2

1

γ
+ γ − 1

γ

χ

2kBT0

)
p1

p0

]
, (9)

where

H0 = e2

a

√
2

N00λ3

√
1

2kBT me
exp

( −χ

2kBT

)
E2

p. (10)
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When 2kBT < χ , the last term which is due to the varying
ionization fraction dominates. Note that in general T and H0

will vary with position. In this initial analysis, however, we
take them to be uniform.

VI. WAVE EQUATION WITH NEGATIVE DAMPING

Keeping only the largest, time dependent term in Eq. (9),
the acoustic wave equation in the presence of a fixed power
input can be written explicitly in terms of acoustic pressure as

∂2

∂t2
p1 − c2∇2 p1 = (γ − 1)2

c2ρ0
H0

χ

2kBT0

∂

∂t
p1. (11)

Note that the sign of the term on the right hand side is opposite
of a damping term. Negative damping is a characteristic of
self-oscillation and often causes systems to depart from the
linear regime. Examples of negative damping and other types
of positive feedback can be found in [23,24].

The possibility of amplification due to a sound wave
traversing a partially ionized gas has been considered before
in the literature and used to explain traveling striations in
plasma tubes [7,8,14]. Those treatments, however, did not
address the increased ionization fraction due to the temper-
ature swing of the adiabatic compression of the gas, because
the electron recombination time was assumed long compared
to an acoustic period. In the previously reported cases, the
neutral density was much lower than those considered here,
so Saha equilibrium is not achieved within an acoustic oscil-
lation. By considering how the adiabatic temperature swing
causes increased ionization via Saha’s equation, we show
here that a collisional, partially ionized gas may demonstrate
rf-fueled self-oscillation more readily than previously antici-
pated.

VII. SELF-OSCILLATION IN A SPHERICAL CAVITY

Self-oscillation will occur when amplification exceeds
losses. In order to assess whether this amplification mech-
anism can generate acoustic energy sufficient to exceed the
acoustic losses, we will solve Eq. (11) in the simplest rep-
resentative case, a spherical cavity with rigid walls and a
uniform temperature. Following the technique presented in
[14], we will compare the growth time constant due to am-
plification to the decay constant due to acoustic damping.
At the low acoustic amplitudes characteristic of the onset
of amplification, these constants can be calculated indepen-
dently. To determine conditions for the onset of amplification,
a comparison of these time constants serves as a valid proxy
for determining whether the energy added to the acoustic
field exceeds that lost due to acoustic damping. The unique
geometry of a spherical cavity simplifies the calculation of
damping losses and offers other benefits as will be explained
in the next section.

Amplification due to time-varying ionization can be stud-
ied by applying the wave equation in Eq. (11) in a spherical
cavity of radius R containing a homogeneous gas of tempera-
ture T0, speed of sound c, and density ρ0. Here, we assume the
walls are perfectly rigid and consider only the first breather
mode, in which case the acoustic pressure field assumes the

form

p1(t, r) = P1 j0
(πα1r

R

)
eiω1t , (12)

where j0 is the spherical Bessel function and α1 satisfies
j′0(πα1) = 0. Using this functional form, the wave equation
in Eq. (11) generates the characteristic equation

ω2
1 + i

(γ − 1)2

c2ρ0
H0

χ

2kBT0
ω1 − c2π2α2

1

R2
= 0. (13)

The real term determines the resonance frequency and is
dominated by the cavity’s geometry. The imaginary term,
which is the negative damping or amplification, will cause an
exponential growth with time constant,

τamp = 2ρ0c2kBT0

(γ − 1)2H0χ
. (14)

VIII. DAMPING DUE TO THERMAL DIFFUSION

Greenspan et al. [25] performed probably the most careful
analysis of the resonant modes of a sphere in order to make
an extraordinarily accurate thermometer which was also a
device capable of determining the universal gas constant
with an accuracy of 1.7 ppm. In so doing, they highlighted
reasons why a spherical cavity is better for determination of
thermodynamic properties and for acoustic resonance mea-
surements than other shapes that also apply well for improving
conditions for amplification as follows. (1) In the breather
mode the velocity is everywhere perpendicular to the surface,
so there is no viscous damping at that surface. (2) Spheres
have the smallest surface to volume ratio, so losses at the
surface are minimized. (3) Acoustic energy density is peaked
away from the walls. (4) The higher order resonance frequen-
cies are not linear multiples of the breather and therefore less
easily excited.

These issues under consideration, the main source of
damping in a spherical cavity is thermal loss to the fixed
temperature walls. The time scale of this damping is given
in [25] as

τκ =
√

2R2

(γ − 1)2ω1DT
, (15)

where DT is the coefficient of thermal diffusivity. By com-
paring the growth time scale, Eq. (14), to the decay time
scale, Eq. (15), it is possible to determine the feasibility of
the amplification process. As microwave power is increased,
τamp − τκ decreases toward zero, and the acoustic quality
factor diverges.When τamp < τκ , the cavity will amplify its
resonant modes. Here we consider which configurations of
temperature, incident power, and number density encourage
amplification. This approach might be compared to the analy-
sis of more typical thermoacoustic engines where the quality
factor is found to diverge for a sufficient temperature gradient
across the stack [26].

The growth and decay time scales are plotted in Fig. 2 for
argon with a neutral density of 2.5 × 1019 per cc in a bulb
with a radius of 2 cm, and subjected to 2.45 GHz microwaves
with incident powers ranging from 500 W to 2 kW. The
electron-neutral collision cross section, a, was taken to be
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FIG. 2. Comparison of the acoustic damping time constant, τκ ,
and the acoustic amplification time constant, τamp, for three incident
powers, neutral density N0 = 2.5 × 1019 per cc, and microwave
quality factor Qc = 1000. When τamp < τκ , the energy added to the
acoustic field by the absorbed microwave exceeds the acoustic losses.
The increase in amplification time at low temperatures is due to
the inability of low temperature plasma to absorb microwaves as
described in the text. To illustrate how the quality factor impacts the
amplification time, the 2 kW case is shown both with Qc = 1000
(solid) and Qc = 2000 (dotted).

2 × 10−17 cm2, and the thermal diffusivity adapted from
[27] was approximately 10−4 W/m K. With sufficient power
applied, the amplification time is shorter than the damping
time for a range of temperatures. The increased time constant
at low temperatures occurs because the plasma doesn’t absorb
power at low conductivity as explained in the next section.

IX. COUPLING SUFFICIENT MICROWAVE POWER

For microwave radiation to couple to the sound field, it
must first be absorbed by the hot gas. If the conductivity of
the hot gas is too low, the energy will ultimately dissipate
elsewhere such as in the microwave cavity walls. In the
Appendix, we calculate the power absorbed per unit volume
within the gas, H0, as a function of temperature by comparing
the microwave dissipation in the walls to that absorbed in the
plasma. It is found to be

H0 = Pin

Vp

[
1 + A

ε0ωVc

σpQcVp

]−1

, (16)

where Pin is the total incident power, Vp is plasma volume,
and A is a geometrical factor that depends on the plasma’s
effect on the shape of the mode. Note that in the limit of low
temperature where σ → 0, H0 → 0, and at reasonably high
temperatures, H0 → Pin/VP.

The volumetric power absorption in Eq. (16) is used to
calculate the amplification time in Eq. (14). The effect this
has can be seen in the low temperature side of Fig. 2, where
Qc and A were set to 1000 and 1, respectively [11]. In general,
both acoustic time scales depend on the gas, its density, and
its temperature. An example of the range of parameter space
in which amplification might be possible is shown in Fig. 3.

FIG. 3. For each power, acoustic amplification exceeds thermal
acoustic damping, τamp < τκ , to the left of the solid curve. In the
region to the right of the dashed line, the electron-neutral collision
time is short enough to justify use of the Drude conductivity. Below
the dotted line, the microwave penetration depth is larger than the
plasma radius, which justifies use of a constant electric field through-
out the plasma. The shaded area represents the region in parameter
space in which this analysis predicts acoustic self-oscillation for the
2 kW case.

X. CONCLUSION

We have presented a theoretical outline of how acoustic
self-oscillation may happen more readily than previously
expected when heating due to acoustic compression causes
enhanced ionization. We have also shown that this type of
amplification is experimentally feasible. Further work will
need to consider nonhomogeneous temperature profiles and
electron recombination times. Self-oscillation provides a path
toward generating extreme sound fields in a plasma. Further
research should determine which nonlinear process limits the
ultimate achievable amplitude, and what role plasma self-
oscillation could then play in nonlinear acoustics and ther-
moacoustics.
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APPENDIX

When the plasma conductivity is high enough, it is able
to absorb all the incident microwave power. However, when
the conductivity is low, some of the microwave invariably is
absorbed by the microwave cavity walls. This crossover limits
the acoustic gain at low temperatures. In this Appendix we
calculate the fraction of the input power that is absorbed by
the plasma as a function of the plasma conductivity.
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The power loss due to the finite conductivity of the metallic
cavity walls is

Pw = 1

2σwδ

∫
S
|n̂ × �H|2da, (A1)

where δ = √
2/ωμσw is the skin depth of the metallic cavity

walls, σw is the conductivity of the walls, �H is the magnetic
field vector (not to be confused with the volumetric heating,
H), n̂ is a unit vector perpendicular to the wall, and the integral
is taken over the entire cavity surface S [28]. The power loss
due to the finite conductivity of the plasma is

Pp = σp

2

∫
Vp

|�E|2dV, (A2)

where σp is the conductivity of the plasma assumed to be
constant over its volume, �E is the electric field, and the integral
is taken over the plasma volume Vp. Assuming a matched
source, the source power, Pin, will equal the sum of Pw and
Pp. We can then write the power per volume absorbed by the
plasma as a function of the input power,

H0 = Pin

Vp

Pp

Pp + Pw

= Pin

Vp

[
1 + 1

σwσpδ

∫
S |n̂ × �H|2da∫

Vp
|�E|2dV

]−1

.

(A3)

We can gain some insight into this equation by writing the
wall losses in terms of the unloaded (no plasma) quality factor,

Qc = ωε0
∫

Vc
|�E0|2dV

1
σwδ

∫
S |n̂ × �H0|2da

, (A4)

where �E0 and �H0 indicate the fields in the absence of the
plasma and the energy integral is taken over the cavity volume
Vc. H0 can then be written

H0 = Pin

Vp

[
1 + A

ε0ωVc

σpQcVp

]−1

, (A5)

where the unitless constant A is

A = Vp
∫

Vc
|�E0|2dV

∫
S |n̂ × �H|2da

Vc
∫

Vp
|�E|2dV

∫
S |n̂ × �H0|2da

. (A6)

The constant A depends on the particular geometry of the
microwave cavity and the location and size of the plasma
bulb, as well as its conductivity. However, for low plasma
conductivity, we may approximate A as being independent
of σp and use Eq. (A5) to determine the low temperature
behavior of the acoustic gain.
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